Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. ACE: Automated optimization towards iterative Classification in Edge health monitors
 
research article

ACE: Automated optimization towards iterative Classification in Edge health monitors

Wang, Yuxuan  
•
Orlandic, Lara  
•
Machetti, Simone  
Show more
September 26, 2024
IEEE Transactions on Biomedical Circuits and Systems

Wearable devices for health monitoring are essential for tracking individuals' health status and facilitating early detection of diseases. However, processing biomedical signals online for real-time monitoring is challenging due to limited computational resources on edge devices. To address this challenge, we propose an application-agnostic methodology called ACE (Automated optimization towards classification on the Edge). ACE converts a health monitoring algorithm with feature extraction and classification into an iterative detection process, incorporating algorithms of varying complexities and minimizing re-computation of shared data. First, ACE decomposes a monolithic model, employing a single feature set and classifier, into multiple algorithms with different computational complexities. Then, our automatic analysis tool integrates buffering logic into these algorithms to prevent recomputation of shared computational-intensive data. The optimized algorithm is then converted into a low-level language in C for deployment. During runtime, the system initiates monitoring with the lowest complexity algorithm and iteratively involves algorithms with higher complexity without recomputing the existing data. The iteration process continues until a pre-defined confidence threshold is met. We demonstrate the effectiveness of ACE on two biomedical applications: seizure detection and emotional state classification. ACE achieves at least 28.9% and 18.9% runtime savings without any accuracy loss on a Cortex-A9 edge platform for the two benchmarks, respectively. We discuss and demonstrate how ACE can be used by designers of such biomedical algorithms to automatically optimize and deploy their applications on the edge.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Automated optimization towards iterative Classification in Edge health monitors.pdf

Type

Main Document

Version

Accepted version

Access type

openaccess

License Condition

N/A

Size

2.45 MB

Format

Adobe PDF

Checksum (MD5)

9ca50112f3102bd856e23aee8e39eb87

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés