Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Convergent Cartesian grid methods for Maxwell's equations in complex geometries
 
research article

Convergent Cartesian grid methods for Maxwell's equations in complex geometries

Ditkowski, A
•
Dridi, K
•
Hesthaven, Jan S.  
2001
Journal of Computational Physics

A convergent second-order Cartesian grid finite difference scheme for the solution of Maxwell's equations is presented. The scheme employs a staggered grid in space and represents the physical location of the material and metallic boundaries correctly, hence eliminating problems caused by staircasing, and, contrary to the popular Yee scheme, enforces the correct jump-conditions on the field components across material interfaces. A detailed analysis of the accuracy of the new embedding scheme is presented, confirming its second-order global accuracy. Furthermore, the scheme is proven to be a bounded error scheme and thus convergent. Conditions for fully discrete stability is furthermore established. This enables the derivation of bounds for fully discrete stability with CFL-restrictions being almost identical to those of the much simpler Yee scheme. The analysis exposes that the effects of staircasing as well as a lack of properly enforced jump-conditions on the field components have significant consequences for the global accuracy. It is, among other things, shown that for cases in which a field component is discontinuous along a grid line, as happens at general two- and three-dimensional material interfaces, the Yee scheme may exhibit local divergence and loss of global convergence, To validate the analysis several one- and two-dimensional test cases are presented, showing an improvement of typically 1 to 2 orders of accuracy at little or no additional computational cost over the Yee scheme, which in most cases exhibits First order accuracy. (C) 2001 Academic Press.

  • Details
  • Metrics
Type
research article
DOI
10.1006/jcph.2001.6719
Web of Science ID

WOS:000169946300003

Author(s)
Ditkowski, A
Dridi, K
Hesthaven, Jan S.  
Date Issued

2001

Published in
Journal of Computational Physics
Volume

170

Issue

1

Start page

39

End page

80

Subjects

finite difference schemes

•

Maxwell's equations

•

complex geometries

•

embedded interfaces

•

stability

•

staircasing

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
MCSS  
Available on Infoscience
November 12, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/96865
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés