Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids
 
research article

High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids

Jacobs, GB
•
Hesthaven, Jan S.  
2006
Journal of Computational Physics

We present a high-order particle-in-cell (PIC) algorithm for the simulation of kinetic plasmas dynamics. The core of the algorithm utilizes an unstructured grid discontinuous Galerkin Maxwell field solver combining high-order accuracy with geometric flexibility. We introduce algorithms in the Lagrangian framework that preserve the favorable properties of the field solver in the PIC solver. Fast full-order interpolation and effective search algorithms are used for tracking individual particles on the general grid and smooth particle shape functions are introduced to ensure low noise in the charge and current density. A pre-computed levelset distance function is employed to represent the geometry and facilitates complex particle-boundary interaction. To enforce charge conservation we consider two different techniques, one based on projection and one on hyperbolic cleaning. Both are found to work well, although the latter is found be too expensive when used with explicit time integration. Examples of simple plasma phenomena, e.g., plasma waves, instabilities, and Landau damping are shown to agree well with theoretical predictions and/or results found by other computational methods. We also discuss generic well known problems such as numerical Cherenkov radiation and grid heating before presenting a few two-dimensional tests, showing the potential of the current method to handle fully relativistic plasma dynamics in complex geometries. 2005 Elsevier Inc. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JCP2006.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

1.59 MB

Format

Adobe PDF

Checksum (MD5)

e07aca6cfa20454b9541dc28da16061c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés