Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Method for the Assessment of the Optimal Parameter of Discrete-Time Switch Model
 
research article

A Method for the Assessment of the Optimal Parameter of Discrete-Time Switch Model

Razzaghi, Reza  
•
Foti, Chrysa
•
Paolone, Mario  
Show more
2014
Electric Power Systems Research

This paper proposes a novel method for the optimal parameter selection of the discrete-time switch model used in circuit solvers that adopt the fixed admittance matrix nodal method (FAMNM) approach. As known, FAMNM-based circuit solvers allow to reach efficient computation times, in particular for real-time simulation applications, since they do not need the inversion of the circuit nodal admittance matrix. However, these solvers need to optimally tune the so-called discrete switch conductance, since this parameter might largely affect the simulations accuracy. Within this context, we propose a method for the determination of the discrete-time switch conductance which is obtained by minimizing the distance between the eigenvalues of the original circuit's nodal admittance matrix with those associated with the circuit including the discrete-time switches. The method is proven to provide values of the discrete-time switch conductance that maximize the simulation accuracy and minimize the losses on this artificially introduced parameter. Additionally, the proposed method avoids the use of trial-and-error process typically required when discrete-time switch conductances need to be addressed in FAMNM approach. The performances of the proposed method are demonstrated for circuits with single and multiple switches in which passive RLC elements and transmission lines are both considered.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2014 - Razzaghi et al - A method for the assessment of the optimal paramter of discrete-time switch model.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1 MB

Format

Adobe PDF

Checksum (MD5)

e5b70bb99caa913fe74ae54769d93acf

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés