Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits
 
research article

Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits

Blésin, Terence  
•
Kao, Wil  
•
Siddharth, Anat  
Show more
December 1, 2024
Nature Communications

Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing. Here, we present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators on silicon nitride photonic circuits. Such an actuator couples microwave signals to a high-overtone bulk acoustic resonator defined by the silica cladding of the optical waveguide core, suspended to enhance electromechanical and optomechanical couplings. At room temperature, this triply resonant piezo-optomechanical transducer achieves an off-chip photon number conversion efficiency of 1.6 × 10−5 over a bandwidth of 25 MHz at an input pump power of 21 dBm. The approach is scalable in manufacturing and does not rely on superconducting resonators. As the transduction process is bidirectional, we further demonstrate the synthesis of microwave pulses from a purely optical input. Capable of leveraging multiple acoustic modes for transduction, this platform offers prospects for frequency-multiplexed qubit interconnects and microwave photonics at large.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41467-024-49467-8.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.33 MB

Format

Adobe PDF

Checksum (MD5)

c738d3a3b4d8f3e1a598e6d914100b99

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés