Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Permeability sets the linear path instability of buoyancy-driven disks
 
research article

Permeability sets the linear path instability of buoyancy-driven disks

Vagnoli, Giovanni
•
Zampogna, G. A.
•
Camarri, S.
Show more
January 18, 2023
Journal of Fluid Mechanics

The prediction of trajectories of buoyancy-driven objects immersed in a viscous fluid is a key problem in fluid dynamics. Simple-shaped objects, such as disks, present a great variety of trajectories, ranging from zig-zag to tumbling and chaotic motions. Yet, similar studies are lacking when the object is permeable. We perform a linear stability analysis of the steady vertical path of a thin permeable disk, whose flow through the microstructure is modelled via a stress-jump model based on homogenization theory. The relative velocity of the flow associated with the vertical steady path presents a recirculation region detached from the body, which shrinks and eventually disappears as the disk becomes more permeable. In analogy with the solid disk, one non-oscillatory and several oscillatory modes are identified and found to destabilize the fluid-solid coupled system away from its straight trajectory. Permeability progressively filters out the wake dynamics in the instability of the steady vertical path. Modes dominated by wake oscillations are first stabilized, followed by those characterized by weaker, or absent, wake oscillations, in which the wake is typically a tilting induced by the disk inclined trajectory. For sufficiently large permeabilities, the disk first undergoes a non-oscillatory divergence instability, which is expected to lead to a steady oblique path with a constant disk inclination, in the nonlinear regime. A further permeability increase reduces the unstable range of all modes until quenching of all linear instabilities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

div-class-title-permeability-sets-the-linear-path-instability-of-buoyancy-driven-disks-div.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.68 MB

Format

Adobe PDF

Checksum (MD5)

93e4b6d5ec51647a0d03e156578a27fd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés