Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multi-domain Fourier-continuation/WENO hybrid solver for conservation laws
 
research article

Multi-domain Fourier-continuation/WENO hybrid solver for conservation laws

Shahbazi, Khosro
•
Albin, Nathan
•
Bruno, Oscar P.
Show more
2011
Journal of Computational Physics

We introduce a multi-domain Fourier-continuation/WENO hybrid method (FC-WENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws, and which enjoys essentially dispersionless, spectral character away from discontinuities, as well as mild CFL constraints (comparable to those of finite difference methods). The hybrid scheme employs the expensive, shock-capturing WENO method in small regions containing discontinuities and the efficient FC method in the rest of the computational domain, yielding a highly effective overall scheme for applications with a mix of discontinuities and complex smooth structures. The smooth and discontinuous solution regions are distinguished using the multi-resolution procedure of Harten [J. Comput. Phys. 115 (1994) 319-338]. We consider WENO schemes of formal orders five and nine and a FC method of order five. The accuracy, stability and efficiency of the new hybrid method for conservation laws is investigated for problems with both smooth and non-smooth solutions. In the latter case, we solve the Euler equations for gas dynamics for the standard test case of a Mach three shock wave interacting with an entropy wave, as well as a shock wave (with Mach 1.25, three or six) interacting with a very small entropy wave and evaluate the efficiency of the hybrid FC-WENO method as compared to a purely WENO-based approach as well as alternative hybrid based techniques. We demonstrate considerable computational advantages of the new FC-based method, suggesting a potential of an order of magnitude acceleration over alternatives when extended to fully three-dimensional problems. (C) 2011 Elsevier Inc. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JCP2302011.pdf

Access type

openaccess

Size

529.21 KB

Format

Adobe PDF

Checksum (MD5)

160698f126d8a4342ced3bfb3dcd1b6a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés