Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Towards structural dynamics in condensed chemical systems exploiting ultrafast time-resolved x-ray absorption spectroscopy
 
research article

Towards structural dynamics in condensed chemical systems exploiting ultrafast time-resolved x-ray absorption spectroscopy

Bressler, Christian  
•
Saes, Melanie
•
Chergui, Majed  
Show more
2002
The Journal of Chemical Physics

The authors present the case for exploiting time-resolved x-ray absorption to study structural dynamics in the liq. phase. With this aim in mind and considering the large differences between absorption coeffs. in the optical and the x-ray domains as well as the x-ray absorption cross sections due to unexcited species, the authors have estd. the anticipated signal-to-noise ratio (S/N) under realistic conditions with femtosecond laser pump pulses and synchrotron radiation x-ray probe pulses. As a model system, the authors examine I- photodetachment in H2O and detect the appearance of laser-generated neutral I atoms by their x-ray near-edge absorption structure (XANES) and by their extended x-ray absorption fine structure (EXAFS). While the S/N ratio critically depends on the photolysis yield, which itself is governed by the optical absorption cross section, the optimum sample concn. varies in a complex fashion as a function of pump laser intensity and optical absorption cross section. However, concns. yielding near total absorption of the pump laser deliver quite optimum S/N ratios. The calcns. presented here provide guidelines for the implementation of time-resolved x-ray absorption expts. in condensed phase chem. systems. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.1435618
Author(s)
Bressler, Christian  
Saes, Melanie
Chergui, Majed  
Grolimund, Daniel
Abela, Rafael
Pattison, Philip  
Date Issued

2002

Published in
The Journal of Chemical Physics
Volume

116

Issue

7

Start page

2955

End page

2966

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSU  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/225815
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés