Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deciphering Three Beneficial Effects of 2,2 '-Bipyridine-N,N '-Dioxide on the Luminescence Sensitization of Lanthanide(III) Hexafluoroacetylacetonate Ternary Complexes
 
research article

Deciphering Three Beneficial Effects of 2,2 '-Bipyridine-N,N '-Dioxide on the Luminescence Sensitization of Lanthanide(III) Hexafluoroacetylacetonate Ternary Complexes

Eliseeva, Svetlana V.  
•
Pleshkov, Dmitry N.
•
Lyssenko, Konstantin A.
Show more
2011
Inorganic Chemistry

Lanthanide hexafluoroacetylacetonate ternary complexes with 2,2'-bipyridine-N,N'-dioxide, [Ln(hfa)3(bpyO2)], were synthesized for Ln = Eu, Gd, Tb, and Lu and fully characterized by elemental, thermal, and mass-spectrometric analyses. The X-ray crystal structure of [Eu(hfa) 3(bpyO2)].0.5C6H6 reveals an octa-coordinate metal ion lying in a severely distorted trigonal dodecahedron geometry; the Eu-O distances lie in the range 2.36-2.44 Å with no significant difference between hfa- and bpyO2. A detailed comparative photophysical investigation has been carried out to determine the exact influence of the introduction of bpyO2 in the inner coordination sphere of the metal ion in replacement of the two water molecules in [Ln(hfa)3(H2O)2]. While this replacement is detrimental for Tb, it leads to a 15-fold increase in the overall quantum yield for Eu. This large improvement originates from (i) a better sensitization efficiency, the ancillary ligand being responsible for 3/4 of the energy transfer, (ii) elimination of nonradiative deactivation pathways through harmonics of O-H vibrations, and (iii) reduction in the radiative lifetime. The latter influence is rarely documented, but it accounts here for ã25% increase in the intrinsic quantum yield, so that more attention should be given to this parameter when designing highly luminescent lanthanide complexes. © 2011 American Chemical Society.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IC-11-5137-Deciphering_BpyNO2-Eliseeva.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

838.75 KB

Format

Adobe PDF

Checksum (MD5)

ba0a4f036b83b08839bf9d4b40714472

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés