Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Decentralized State Initialization with Delay Compensation for Multi-modal Sensor Networks
 
research article

Decentralized State Initialization with Delay Compensation for Multi-modal Sensor Networks

Borkar, Milind
•
Cevher, Volkan  orcid-logo
•
McClellan, James H.
2007
Journal of Vlsi Signal Processing Systems for Signal Image and Video Technology

Decentralized processing algorithms are attractive alternatives to centralized algorithms for target tracking applications in smart sensor networks since they provide the ability to scale, reduce vulnerability, reduce communication and share processing responsibilities among individual nodes. Sharing the processing responsibilities allows parallel processing of raw data at the individual nodes. However, this introduces other difficulties in multi-modal smart sensor networks, such as non- observability of the target state at any individual node and various delays such as varying processing delays, communication delays and signal propagation delays for the different modalities. In this paper, we provide a novel algorithm to determine the initial probability distribution of multiple target states in a decentralized manner. The targets state vector consists of the target positions and velocities on the 2D plane. Our approach can determine the state vector distribution even if the individual sensors alone are not capable of observing it. Our approach can also compensate for varying delays among the assorted modalities. The resulting distribution can be used to initialize various tracking algorithms. Our approach is based on Monte-Carlo methods, where the state distributions are represented as a weighted set of discrete state realizations. A robust weighting strategy is formulated to account for missed detections, clutter and estimation delays. To demonstrate the effectiveness of the algorithm, we simulate a network with direction-of-arrival nodes and range-doppler nodes.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Decentralized State Initialization with Delay Compensation for Multi-modal Sensor Networks.pdf

Access type

openaccess

Size

1.06 MB

Format

Adobe PDF

Checksum (MD5)

aed3c1f6cca64586174404ed9cb8532b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés