Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Performance and Energy Trade-offs Analysis of L2 on-Chip Cache Architectures for Embedded MPSoCs
 
conference paper

Performance and Energy Trade-offs Analysis of L2 on-Chip Cache Architectures for Embedded MPSoCs

Sabry Aly, Mohamed M.  
•
Ruggiero, Martino  
•
Garcia del Valle, Pablo  
2010
Proceedings of the 20th symposium on Great lakes symposium on VLSI
20th symposium on Great lakes symposium on VLSI

On-chip memory organization is one of the most important aspects that can influence the overall system behavior in multi-processor systems. Following the trend set by high-performance processors, high-end embedded cores are moving from single-level on chip caches to a two-level on-chip cache hierarchy. Whereas in the embedded world there is general consensus on L1 private caches, for L2 there is still not a dominant architectural paradigm. Cache architectures that work for high performance computers turn out to be inefficient for embedded systems (mainly due to power-efficiency issues). This paper presents a virtual platform for design space exploration of L2 cache architectures in low-power Multi-Processor-Systems-on-Chip (MPSoCs). The tool contains several L2 caches templates, and new architectures can be easily added using our flexible plugin system. Given a set of constrains for a specific system (power, area, performance), our tool will perform extensive exploration to find the cache organization that best suits our needs. Through some practical experiments, we show how it is possible to select the optimal L2 cache, and how this kind of tool can help designers avoid some common misconceptions. Benchmarking results in the experiments section will show that for a case study with multiple processors running communicating tasks allocated on different cores, the private L2 cache organization still performs better than the shared one.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

p305-sabry.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

878.64 KB

Format

Adobe PDF

Checksum (MD5)

cdc6dbae89ad5988c70f0c04795308f1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés