Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Anatomy-Informed Multimodal Learning for Myocardial Infarction Prediction
 
research article

Anatomy-Informed Multimodal Learning for Myocardial Infarction Prediction

Sievering, Ivan Daniel  
•
Senouf, Ortal  
•
Mahendiran, Thabo
Show more
2024
IEEE Open Journal of Engineering in Medicine and Biology

Goal: In patients with coronary artery disease, the prediction of future cardiac events such as myocardial infarction (MI) remains a major challenge. In this work, we propose a novel anatomy-informed multimodal deep learning framework to predict future MI from clinical data and Invasive Coronary Angiography (ICA) images. Methods: The images are analyzed by Convolutional Neural Networks (CNNs) guided by anatomical information, and the clinical data by an Artificial Neural Network (ANN). Embeddings from both sources are then merged to provide a patient-level prediction. Results: The results of our framework on a clinical study of 445 patients admitted with acute coronary syndromes confirms that multimodal learning increases the predictive power and achieves good performance (AUC: 0.67 ± 0.04 & F1-Score: 0.36 ± 0.12), which outperforms the prediction obtained by each modality independently as well as that of interventional cardiologists (AUC: 0.54 & F1-Score: 0.18). Conclusions: To the best of our knowledge, this is the first attempt towards combining multimodal data through a deep learning framework for future MI prediction. Although it demonstrates the superiority of multi-modal approaches over single modality, the results do not yet meet the necessary criteria for practical application.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1109_ojemb.2024.3403948.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

957.03 KB

Format

Adobe PDF

Checksum (MD5)

48c82e70277a13f007c853442714f7f1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés