Characterisation of Polymer Materials for the Development of an Artificial Urethra
Low Urinary Tract Dysfunctions (LUTD) and in particular Urinary Incontinence (UI) is a medical condition affecting millions of people worldwide. In this context researchers and engineers performed tests on porcine and human urethras. However, ethical concerns and limited human tissue availability make direct testing on human urethras complicated. Consequently, animal testing, particularly on porcine urethras, has been explored due to their analogous dimensions, anatomical features, and tissue properties. Even though the use of porcine urethras is a good replacement of human urethras, it does not have exactly the same dimensions, mechanical properties and brings ethical concerns. In this paper we propose a replacement for porcine and human urethra testing by investigating several materials that could be used to develop an artificial urethra. Promising materials such as polymers from the silicone and hydrogel families are identified from our literature review. Then, experimental tests performed on an universal tensile test machine is detailed, including the manufacturing of several polymers for which the stress strain response were not well defined in existing literature. From our results, silicone Ecoflex 0010 and our custom made hydrogel polyacrylamide (PAAm) exhibit a stress strain relationship close to human urethra. Even though human urethra and the tested polymers demonstrate a non-linear behaviour, our results shows that our PAAm and Ecoflex 0010 have a maximum stress ranging from 2.2 to 20 kPa for a strain varying from 0 to 1. These materials are deemed suitable as an artificial urethra and a viable substitute for the human urethra.
2-s2.0-85214994032
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
Université de Lorraine
École Polytechnique Fédérale de Lausanne
2024
9798350371499
REVIEWED
EPFL
| Event name | Event acronym | Event place | Event date |
Orlando, United States | 2024-07-15 - 2024-07-19 | ||