Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening
 
research article

A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening

Busi, Matteo
•
Kalentics, Nikola  
•
Morgano, Manuel
Show more
July 21, 2021
Scientific Reports

Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40% or 80% respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54% and 104% respectively, compared to the conventional LSP treatment.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41598-021-94455-3.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.73 MB

Format

Adobe PDF

Checksum (MD5)

f70902cadc35d53389a7438be0805546

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés