A dataset of synthetic, maturation-informed magnetic resonance images of the human fetal brain
Magnetic resonance imaging (MRI) is a powerful modality for investigating abnormal developmental patterns in utero. However, since it is not the first-line diagnostic tool in this sensitive population, data remain scarce and heterogeneous across scanners and hospitals. To address this, we present a novel dataset of synthetic images representative of real fetal brain MRI. Our dataset comprises 594 two-dimensional, low-resolution series of T2-weighted images corresponding to 78 developing human fetal brains between 20.0 and 34.8 weeks of gestational age. Data are generated using a new version of the Fetal Brain MR Acquisition Numerical phantom (FaBiAN) to account for local white matter heterogeneities throughout maturation. Both healthy and pathological anatomies are simulated with standard clinical settings. Two independent radiologists qualitatively assessed the realism of the simulated images. A quantitative analysis confirms an enhanced fidelity compared to the original version of the software, with further validation through its applicability to fetal brain tissue segmentation. The cohort is publicly available to support the continuous endeavor of developing advanced post-processing methods as well as cutting-edge artificial intelligence models.
10.1038_s41597-025-04926-9.pdf
Main Document
Published version
openaccess
CC BY
3.46 MB
Adobe PDF
2f3ad7644c0b831599b4885fec082ff0