Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On Achieving Periodic Joint-Motion for Redundant Robots
 
conference paper

On Achieving Periodic Joint-Motion for Redundant Robots

Michellod, Y.
•
Mullhaupt, Ph.  
•
Gillet, D.  
2008
IFAC Proceedings Volumes
IFAC World Congress

The consequence of the loss of involutivity of a specific set of vector fields on the periodicity of the joint motion is examined for redundant robots. An output task, defined as a one dimensional periodic closed curve embedded in a two dimensional working surface, is realized through the computation of joint velocities in the configuration space. Depending on the manner in which the joint velocity is computed from the end-effector velocity, the resulting joint motion can become unpredictable and of a chaotical nature, even though the end-effector movement is periodic and predictable. The paper proposes an improvement over classical pseudo-inverse computation of the joint motion by first suitably selecting two involutive vector fields (used as a basis for parameterization) in the tangent bundle of the output manifold. It also presents a sufficient condition for the periodicity of all the joint configuration based on the involutivity of two vector fields in the tangent bundle of the joint space. The results are illustrated on a five-link rotary redundant robot (5R robot).

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S1474667016396318-main.pdf

Type

N/a

Access type

restricted

License Condition

copyright

Size

661.53 KB

Format

Adobe PDF

Checksum (MD5)

0b3746bdcb08c3d85640f6304b0d9421

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés