Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Role of the oxide in memristive quasi-1D silicon nanowires
 
research article

Role of the oxide in memristive quasi-1D silicon nanowires

Chen, Junrui  
•
Bhardwaj, Kapil  
•
Carrara, Sandro  
February 19, 2025
Nanoscale

Memristors are garnering significant attention due to their high similarity to biological neurons and synapses, alongside their unique physical mechanisms. Biosensors exhibiting memristive behaviour have demonstrated substantial efficacy in detecting therapeutic and biological compounds in the past decade. This report investigates silicon nanowire (SiNW)-based devices incorporating Schottky barriers, which exhibit potential for memristive behaviour. The SiNWs are fabricated between two nickel (Ni) pads, defined as 1.5 mu m in length and 90 nm in width, then forming a quasi-one-dimensional (1D) back-to-back Schottky diode structure due to their large aspect ratio. After oxygen plasma treatment of the SiNW, this back-to-back diode structure begins to exhibit memristive behaviour. Our experimental data indicate that this behaviour is induced by superficial oxygen along the SiNW and is influenced by the contacts within the Schottky barrier and the intermediate silicon oxide layer. Furthermore, we have developed a mathematical model derived from the thermal emission equation of Schottky diodes to accurately characterize and understand this memristive behaviour. Thanks to this model, it is possible to accurately fine-tune the design of memristive devices for application in neuromorphic computing and memristive biosensing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1039_d5nr00104h.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.25 MB

Format

Adobe PDF

Checksum (MD5)

ee6420b54ba37ed27c2c081ff6e52701

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés