Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Influence of microstructure on oxygen transport in perovskite type membranes
 
research article

Influence of microstructure on oxygen transport in perovskite type membranes

Diethelm, Stefan  
•
Van herle, Jan  
•
Buffat, Philippe  
Show more
2004
British Ceramic Transactions

The effect of the bulk microstructure (grain size distribution, grain boundary length) on the oxygen transport properties of permeation membranes is investigated in this work. For this purpose, La0.5Sr0.5FeO3-? samples with different microstructures have been prepared by modifying the sintering duration and/or temperature. The average grain sizes, ranging from 0.20 to 1.43 micron, were determined from SEM analysis. The oxygen transport properties of these samples were characterised by permeation measurement as a function of temperature in an air/argon oxygen partial pressure gradient. The fluxes presented a change in the activation energy which was attributed to a change in the rate limiting step, from bulk diffusion at lower temperature (<850°C) to surface limitation at higher temperature (>900°C). Only the transport through the bulk was influenced by the microstructure, with the highest flux for the smallest grains. At 800°C, the fluxes were respectively 0.06, 0.03 and 0.01 micromol/cm2s through 1 mm thick samples of average grain sizes of 0.20, 0.63 and 1.43 micron, respectively. This would imply that oxygen transport occurs more rapidly along the grain boundaries than through the bulk. Grain boundary structure and composition were analysed by TEM.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Diethelm_BritCeramTrans2004.pdf

Access type

restricted

Size

391.05 KB

Format

Adobe PDF

Checksum (MD5)

c71ddf5d9ab771cd04bc8025a67c9d53

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés