Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic
 
research article

Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic

Geroliminis, Nikolaos  
•
Sun, Jie
2011
Transportation Research Part B Methodological

A field experiment in Yokohama (japan) revealed that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. It was observed that when the highly scattered plots of flow vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped along a well defined curve. Despite these and other recent findings for the existence of well-defined MFDs for urban areas, these MFDs should not be universally expected. In this paper we investigate what are the properties that a network should satisfy, so that an MFD with low scatter exists. We show that the spatial distribution of vehicle density in the network is one of the key components that affect the scatter of an MFD and its shape. We also propose an analytical derivation of the spatial distribution of congestion that considers correlation between adjacent links. We investigate the scatter of an MFD in terms of errors in the probability density function of spatial link occupancy and errors of individual links' fundamental diagram (FD). Later, using real data from detectors for an urban arterial and a freeway network we validate the proposed derivations and we show that an MFD is not well defined in freeway networks as hysteresis effects are present. The datasets in this paper consist of flow and occupancy measures from 500 fixed sensors in the Yokohama downtown area in Japan and 600 loop detectors in the Twin Cities Metropolitan Area Freeway network in Minnesota, USA. (C) 2010 Elsevier Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Gerol.Sun2011.pdf

Access type

openaccess

Size

2.29 MB

Format

Adobe PDF

Checksum (MD5)

e03f3c590828e104105d46614ff5b3b0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés