Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CRYOWRF—Model Evaluation and the Effect of Blowing Snow on the Antarctic Surface Mass Balance
 
research article

CRYOWRF—Model Evaluation and the Effect of Blowing Snow on the Antarctic Surface Mass Balance

Gerber, Franziska  
•
Sharma, Varun  
•
Lehning, Michael  
June 27, 2023
Journal of Geophysical Research: Atmospheres

The surface mass balance (SMB) of large polar ice sheets and of snow and ice surfaces in general are incompletely understood because of the complexity of processes involved. One such process, drifting and blowing snow, has only been considered in a very simplified way in current meteorological and climatological models. To address this problem, the CRYOWRF model has been developed, a coupled model between the meteorological Weather Research and Forecasting model (WRF) and the snow model SNOWPACK, augmented by a detailed treatment of drifting and blowing snow. Applying CRYOWRF to the SMB of Antarctica, we find that the model reproduces measurements of SMB with similar errors than current models. Drifting and blowing snow and its sublimation play a particularly important role, especially in regions of strong katabatic winds. The CRYOWRF simulations are also in line with satellite estimates of blowing snow frequency. There is a need to further consolidate results by simulations with a higher grid resolution and by including more measurements of SMB contributions from snow fall to transport and sublimation.

Plain Language Summary Assessing current and predicting future sea level rise in connection with the general fate of our snow and ice masses on Earth requires understanding snow precipitation in extreme environments and the dynamics of snow on the surface. Over large parts of Antarctica, drifting and blowing snow and sublimation, which is the phase change of ice back to atmospheric vapor, are the only surface ablation processes and need therefore to be well quantified. With a new model, that shows similar performance to other models, we find that drifting and blowing snow and its sublimation play an important role for the snow mass balance especially in regions with strong winds. This has consequences not only for the snow mass balance alone but for the whole ice sheet dynamics as well as for estimating precipitation in these extreme environments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JGR Atmospheres - 2023 - Gerber.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

5.37 MB

Format

Adobe PDF

Checksum (MD5)

ced3a6937a5983e11e228c5e8d50b324

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés