Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fast low-specific absorption rate B0-mapping along projections at high field using two-dimensional radiofrequency pulses
 
research article

Fast low-specific absorption rate B0-mapping along projections at high field using two-dimensional radiofrequency pulses

Reynaud, Olivier  
•
Gallichan, Daniel  
•
Schaller, Benoit  
Show more
2015
Magnetic Resonance in Medicine

Purpose At 7 Tesla (T), conventional static field (B0) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. Methods Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152–160) in six different brain regions. Results Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. Conclusion Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Reynaud_FASTMAP_MRM_2015.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

347.64 KB

Format

Adobe PDF

Checksum (MD5)

092cdbaf5a6064f0852bbfcb350c5c3b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés