Vanadium-Doped Hafnium Oxide: A High-Endurance Ferroelectric Thin Film with Demonstrated Negative Capacitance
This study proposes and validates a novel CMOS-compatible ferroelectric thin-film insulator made of vanadium-doped hafnium oxide (V:HfO2) by using an optimized atomic layer deposition (ALD) process. Comparative electrical performance analysis of metal-ferroelectric-metal capacitors with varying V-doping concentrations, along with advanced material characterizations, confirmed the ferroelectric behavior and reliability of V:HfO2. With remnant polarization (P-r) values up to 20 mu C/cm(2), a coercive field (E-c) of 1.5 MV/cm, excellent endurance (>10(11) cycles without failure, extrapolated to 10(12) cycles), projected 10-year nonvolatile retention (>100 days measured), and large grain sizes of similar to 180 nm, V:HfO2 emerges as a promising robust candidate for nonvolatile memory and neuromorphic applications. Importantly, negative capacitance (NC) effects were observed and analyzed in V:HfO2 through pulsed measurements, demonstrating its potential for NC applications. Finally, this novel ferroelectric shows potential as a gating insulator for future 3-terminal vanadium dioxide Mott-insulator devices and sensors, achieved through an all-ALD process.
WOS:001417161600001
39918289
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
2025-02-07
REVIEWED
EPFL