Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Volumetric Transformer Networks
 
conference paper

Volumetric Transformer Networks

Kim, Seungryong  
•
Süsstrunk, Sabine  
•
Salzmann, Mathieu  
August 23, 2020
[Proceedings of ECCV '20]
European Conference on Computer Vision (ECCV 2020)

Existing techniques to encode spatial invariance within deep convolutional neural networks (CNNs) apply the same warping field to all the feature channels. This does not account for the fact that the individual feature channels can represent different semantic parts, which can undergo different spatial transformations w.r.t. a canonical configuration. To overcome this limitation, we introduce a learnable module, the volumetric transformer network (VTN), that predicts channel-wise warping fields so as to reconfigure intermediate CNN features spatially and channel-wisely. We design our VTN as an encoder-decoder network, with modules dedicated to letting the information flow across the feature channels, to account for the dependencies between the semantic parts. We further propose a loss function defined between the warped features of pairs of instances, which improves the localization ability of VTN. Our experiments show that VTN consistently boosts the features' representation power and consequently the networks' accuracy on fine-grained image recognition and instance-level image retrieval.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Kim Seungryong-ECCV 2020.pdf

Access type

openaccess

Size

6.69 MB

Format

Adobe PDF

Checksum (MD5)

bcf16b89f58b00dfccec7c03b57e5f79

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés