Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Simulation numérique de phénomènes MHD : application à l'électrolyse de l'aluminium
 
doctoral thesis

Simulation numérique de phénomènes MHD : application à l'électrolyse de l'aluminium

Steiner, Gilles  
2009

The purpose of this thesis is the study, from the numerical simulation point of view, of the aluminum electrolysis process. Navier-Stokes equations for the computation of a two fluids flow with free interface are coupled with Maxwell equations describing the electric current repartition and the magnetic induction field in an electrolysis reduction cell. The emphasis is set on an efficient method for the computation of the magnetic induction in an unbounded domain. The algorithm is based on a Schwarz domain decomposition method and on the Poisson integral representation formula for harmonic functions. The partial differential equations that rule the phenomena are discretized in space and time and implemented in an existing numerical simulation software. This code is then tested on an academic test case and also in a more realistic situation. The key parts of the mathematical model are emphasized. Finally the time-evolution model is compared with another approach, dealing with stationary situations and their linear stability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH4469.pdf

Access type

openaccess

Size

13.75 MB

Format

Adobe PDF

Checksum (MD5)

9a6d209f368590a466ed93d2bf7b042b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés