Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modeling Ruthenium-Dye-Sensitized TiO2 Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation
 
research article

Modeling Ruthenium-Dye-Sensitized TiO2 Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation

De Angelis, Filippo
•
Vitillaro, Giuseppe
•
Kavan, Ladislav  
Show more
2012
Journal Of Physical Chemistry C

We present a first-principles computational investigation on the adsorption mode and electronic structure of the highly efficient heteroleptic ruthenium dye C101, [NaRu(4,4'-bis(5-hexylthiophene-2-yl)-2,2'-bipyridine)(4-carboxylic acid-4'-carboxylate-2,2'-bipyridine) (NCS)(2)], on anatase TiO2 models exposing the (001) and (101) surfaces. The electronic structure of the TiO2 models shows a conduction band energy upshift for the (001)-surface ranging between similar to 50 and similar to 110 meV compared with the (101) surface, in agreement with previous interfacial impedance and recent spectro-electrochemical data. TDDFT excited-state calculations provided the same optical band gap, within 0.01 eV, for the (001)- and (101) models. Two dominant adsorption modes for C101 dye Adsorption on the (001) and (101) surfaces were found, which differ by the binding of the dye carboxylic groups to the TiO2 surfaces (bridged bidentate vs monodentate), leading to sizably different tilting of the anchoring bipyridine plane with respect to the TiO2 surface. The different adsorption mode leads to a smaller dye coverage on the (001) surface, as experimentally found, due to partial contact of the thiophene and alkyl bipyridine substituents with the TiO2 surface. For the energetically favored adsorption modes, we calculate a larger average spatial separation, by 1.3 angstrom, between the dye-based HOMO and the semiconductor surface in (001) and (101) TiO2 models. In terms of simple nonadiabatic electron-transfer considerations, our model predicts a retardation of the charge recombination kinetics, in agreement with the experimental observations.

  • Details
  • Metrics
Type
research article
DOI
10.1021/jp306186y
Web of Science ID

WOS:000308120000017

Author(s)
De Angelis, Filippo
Vitillaro, Giuseppe
Kavan, Ladislav  
Nazeeruddin, Mohammad K.  
Graetzel, Michael  
Date Issued

2012

Publisher

American Chemical Society

Published in
Journal Of Physical Chemistry C
Volume

116

Issue

34

Start page

18124

End page

18131

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPI  
Available on Infoscience
February 27, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/89630
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés