Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Concentration compactness for critical radial wave maps
 
research article

Concentration compactness for critical radial wave maps

Chiodaroli, Elisabetta  
•
Krieger, Joachim  
•
Lührmann, Jonas
2018
Annals of PDE

We consider radially symmetric, energy critical wave maps from (1 + 2)-dimensional Minkowski space into the unit sphere $\mathbf{S}^m$, m≥1, and prove global regularity and scattering for classical smooth data of finite energy. In addition, we establish a priori bounds on a suitable scattering norm of the radial wave maps and exhibit concentration compactness properties of sequences of radial wave maps with uniformly bounded energies. This extends and complements the beautiful classical work of Christodoulou-Tahvildar-Zadeh [3, 4] and Struwe [31, 33] as well as of Nahas [22] on radial wave maps in the case of the unit sphere as the target. The proof is based upon the concentration compactness/rigidity method of Kenig-Merle [6, 7] and a “twisted” Bahouri-Gérard type profile decomposition [1], following the implementation of this strategy by the second author and Schlag [17] for energy critical wave maps into the hyperbolic plane as well as by the last two authors [16] for the energy critical Maxwell-Klein-Gordon equation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Concentration_Compactness_WM.pdf

Access type

openaccess

Size

582.06 KB

Format

Adobe PDF

Checksum (MD5)

1beb88e327fcbfd38a161c6ea7f3b6f8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés