Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Global radiation in a rare biosphere soil diatom
 
research article

Global radiation in a rare biosphere soil diatom

Pinseel, Eveline
•
Janssens, Steven B.
•
Verleyen, Elie
Show more
May 13, 2020
Nature Communications

Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms. It is generally thought many microbes, owing to their ubiquity and dispersal capability, lack biogeographic structuring and clear speciation patterns compared to macroorganisms. However, Pinseel et al. demonstrate multiple cycles of colonization and diversification in Pinnularia borealis, a rare biosphere soil diatom.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-020-16181-0.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.47 MB

Format

Adobe PDF

Checksum (MD5)

2ebdfcad7bb8999a9071f51dce7fcc83

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés