Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards Deeply Scaled 3D MPSoCs with Integrated Flow Cell Array Technology
 
conference paper

Towards Deeply Scaled 3D MPSoCs with Integrated Flow Cell Array Technology

Najibi, Halima  
•
Levisse, Alexandre Sébastien Julien  
•
Zapater Sancho, Marina  
Show more
2020
GLSVLSI '20: Proceedings of the 2020 on Great Lakes Symposium on VLSI
ACM Great Lakes Symposium on VLSI (GLSVLSI)

Deeply-scaled three-dimensional (3D) Multi-Processor Systems-on-Chip (MPSoCs) enable high performance and massive communication bandwidth for next-generation computing. However, as process nodes shrink, temperature-dependent leakage dramatically increases, and thermal and power management becomes problematic. In this context, Integrated Flow Cell Array (FCA) technology, which consists of inter-tier microfluidic channels, combines on-chip electrochemical power generation and liquid cooling of 3D MPSoCs. When connected to power delivery networks (PDN) of dies, FCAs provide an additional current compensating voltage drop (IR-drop) across PDNs. In this paper, we evaluate for the first time how IR-drop reduction and liquid cooling capabilities of the FCAs scale with advanced CMOS processes. We develop a framework to quantify the system-level impact of FCAs at different technology nodes, from 22nm to 3nm. Our results show that, across all considered nodes, FCAs reduce the peak temperature of a multi-core processor (MCP) and a Machine Learning (ML) accelerator by over 22°C and 35°C, respectively, compared to off-chip direct liquid cooling. Moreover, the low operation voltages and high temperatures at advanced nodes improve up to 2× FCA power generation. Hence, FCAs allow us to keep the IR-drop below 5% for both the MCP and ML accelerator, saving over 10% TSV-reserved chip area, as opposed to using a High-Performance Computing (HPC) MPSoC liquid cooling solution.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

GLSVLSI_2020.pdf

Access type

openaccess

Size

1.95 MB

Format

Adobe PDF

Checksum (MD5)

d99f44271af3f7a410b637308882aef5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés