Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Splitting the Smoothed Primal-Dual Gap: Optimal Alternating Direction Methods
 
working paper

Splitting the Smoothed Primal-Dual Gap: Optimal Alternating Direction Methods

Tran Dinh, Quoc  
•
Cevher, Volkan  orcid-logo
2015

We develop rigorous alternating direction optimization methods for a prototype constrained convex optimization template, which has broad applications in computational sciences. We build upon our earlier work on the model-based gap reduction (MGR) technique, which revolves around a smoothed estimate of the primal-dual gap. MGR allows us to simultaneously update a sequence of primal and dual variables as well as primal and dual smoothness parameters so that the smoothed gap function converges to the true gap, which in turn converges to zero -- both at optimal rates. In contrast, this paper introduces a new split-gap reduction (SGR) technique as a natural counterpart of MGR in order to take advantage of additional splitting structures present in the prototype template. We illustrate SGR technique using the forward-backward and Douglas-Rachford splittings on the smoothed gap function and derive new alternating direction methods. The new methods obtain optimal convergence rates without heuristics and eliminate the infamous penalty parameter tuning issue in the existing alternating direction methods. Finally, we verify the performance of our methods in comparison to the existing state-of-the-art and the new theoretical performance bounds via numerical examples.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TranDinh_Cevher_siopt_manuscript_2015.pdf

Access type

openaccess

Size

19.24 MB

Format

Adobe PDF

Checksum (MD5)

3ec6dd7a2a8330f250e53f1544a7b995

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés