Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. TGR5 reduces macrophage migration through mTOR-induced C/EBP beta differential translation
 
research article

TGR5 reduces macrophage migration through mTOR-induced C/EBP beta differential translation

Perino, Alessia  
•
Pols, Thijs Willem Hendrik
•
Nomura, Mitsunori
Show more
2014
The Journal of clinical investigation

The bile acid-responsive G protein-coupled receptor TGR5 is involved in several metabolic processes, and recent studies suggest that TGR5 activation may promote pathways that are protective against diet-induced diabetes. Here, we investigated the role of macrophage-specific TGR5 signaling in protecting adipose tissue from inflammation and associated insulin resistance. Examination of adipose tissue from obese mice lacking macrophage Tgr5 revealed enhanced inflammation, increased chemokine expression, and higher macrophage numbers compared with control obese animals. Moreover, macrophage-specific deletion of Tgr5 exacerbated insulin resistance in obese animals. Conversely, pharmacological activation of TGR5 markedly decreased LPS-induced chemokine expression in primary macrophages. This reduction was mediated by AKT-dependent activation of mTOR complex 1, which in turn induced the differential translation of the dominant-negative C/EBP beta isoform, liver inhibitory protein (LIP). Overall, these studies reveal a signaling pathway downstream of TGR5 that modulates chemokine expression in response to high-fat diet and suggest that targeting this pathway has the potential to be therapeutically exploited for prevention of chronic inflammatory diseases and type 2 diabetes mellitus.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JCI76289.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

3.17 MB

Format

Adobe PDF

Checksum (MD5)

ad3836e00aa5df1f790c96298712cb7d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés