Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. ReCache: Reactive Caching for Fast Analytics over Heterogeneous Data
 
research article

ReCache: Reactive Caching for Fast Analytics over Heterogeneous Data

Azim, Tahir  
•
Karpathiotakis, Manos  
•
Ailamaki, Anastasia  
2017
Proceedings of the VLDB Endowment

As data continues to be generated at exponentially growing rates in heterogeneous formats, fast analytics to extract meaningful information is becoming increasingly important. Systems widely use in-memory caching as one of their primary techniques to speed up data analytics. However, caches in data analytics systems cannot rely on simple caching policies and a fixed data layout to achieve good performance. Different datasets and workloads require different layouts and policies to achieve optimal performance. This paper presents ReCache, a cache-based performance accelerator that is reactive to the cost and heterogeneity of diverse raw data formats. Using timing measurements of caching operations and selection operators in a query plan, ReCache accounts for the widely varying costs of reading, parsing, and caching data in nested and tabular formats. Combining these measurements with information about frequently accessed data fields in the workload, ReCache automatically decides whether a nested or relational column-oriented layout would lead to better query performance. Furthermore, ReCache keeps track of commonly utilized operators to make informed cache admission and eviction decisions. Experiments on synthetic and real-world datasets show that our caching techniques decrease caching overhead for individual queries by an average of 59%. Furthermore, over the entire workload, ReCache reduces execution time by 19-75% compared to existing techniques.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

p375-azim.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

785.92 KB

Format

Adobe PDF

Checksum (MD5)

3a71a14f1248eafe0fac9200f8704475

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés