Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Structural and electronic properties of small Cu-n clusters using generalized-gradient approximations within density functional theory
 
research article

Structural and electronic properties of small Cu-n clusters using generalized-gradient approximations within density functional theory

Massobrio, C.
•
Pasquarello, Alfredo  
•
Dal Corso, A.
1998
Journal of Chemical Physics

Neutral and anionic Cu-n clusters (Cu-2, Cu-3, Cu-6 and Cu-7(-)) are studied within density functional theory via the local density approximation (LDA) and the generalized-gradient approximation (GGA) of Perdew and Wang for exchange and correlation. Three different levels of improvement upon the LDA are considered. In the first level, the GGA correction to the exchange-correlation energy is evaluated using the electronic density and the atomic coordinates obtained in the LDA calculation. In the second level, the electronic density is obtained self-consistently within the GGA while keeping the LDA structural configurations. In the third level, both electronic density and ionic positions are obtained fully self-consistently within the GGA. We found that the first level of approximation is already sufficient to correct the overbinding found in the LDA. With respect to the LDA, the self-consistent GGA enhances the electron charge accumulation around the nuclei by depleting the interatomic bonding regions, (C) 1998 American Institute of Physics. [S0021-9606(98)30240-8].

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.477313
Author(s)
Massobrio, C.
Pasquarello, Alfredo  
Dal Corso, A.
Date Issued

1998

Published in
Journal of Chemical Physics
Volume

109

Issue

16

Start page

6626

End page

6630

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CSEA  
Available on Infoscience
October 8, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/43393
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés