Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. MATHICSE Technical Report: Adaptive isogeometric analysis on two-dimensional trimmed domains based on a hierarchical approach
 
working paper

MATHICSE Technical Report: Adaptive isogeometric analysis on two-dimensional trimmed domains based on a hierarchical approach

Coradello, Luca  
•
Antolin Sanchez, Pablo  
•
Vazquez Hernandez, Rafael  
Show more
October 9, 2019

The focus of this work is on the development of an error-driven isogeometric framework, capable of automatically performing an adaptive simulation in the context of second- and fourth-order, elliptic partial differential equations defined on two-dimensional trimmed domains. The method is steered by an a posteriori error estimator, which is computed with the aid of an auxiliary residual-like problem formulated onto a space spanned by splines with single element support. The local refinement of the basis is achieved thanks to the use of truncated hierarchical B-splines. We prove numerically the applicability of the proposed estimator to various engineering-relevant problems, namely the Poisson problem, linear elasticity and Kirchhoff-Love shells, formulated on trimmed geometries. In particular, we study several benchmark problems which exhibit both smooth and singular solutions, where we recover optimal asymptotic rates of convergence for the error measured in the energy norm and we observe a substantial increase in accuracy per-degree-of-freedom compared to uniform refinement. Lastly, we show the applicability of our framework to the adaptive shell analysis of an industrial-like trimmed geometry modeled in the commercial software Rhinoceros, which represents the B-pillar of a car.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Report_adaptivity_trimming.pdf

Access type

openaccess

Size

7.12 MB

Format

Adobe PDF

Checksum (MD5)

e78a8884d66155e2a337f3224299f729

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés