Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Temporal SNR characteristics in segmented 3D-EPI at 7T
 
research article

Temporal SNR characteristics in segmented 3D-EPI at 7T

van der Zwaag, W.  
•
Marques, J. P.  
•
Kober, T.  
Show more
2012
Magnetic Resonance in Medicine

Three-dimensional segmented echo planar imaging (3D-EPI) is a promising approach for high-resolution functional magnetic resonance imaging, as it provides an increased signal-to-noise ratio (SNR) at similar temporal resolution to traditional multislice 2D-EPI readouts. Recently, the 3D-EPI technique has become more frequently used and it is important to better understand its implications for fMRI. In this study, the temporal SNR characteristics of 3D-EPI with varying numbers of segments are studied. It is shown that, in humans, the temporal variance increases with the number of segments used to form the EPI acquisition and that for segmented acquisitions, the maximum available temporal SNR is reduced compared to single shot acquisitions. This reduction with increased segmentation is not found in phantom data and thus likely due to physiological processes. When operating in the thermal noise dominated regime, fMRI experiments with a motor task revealed that the 3D variant outperforms the 2D-EPI in terms of temporal SNR and sensitivity to detect activated brain regions. Thus, the theoretical SNR advantage of a segmented 3D-EPI sequence for fMRI only exists in a low SNR situation. However, other advantages of 3D-EPI, such as the application of parallel imaging techniques in two dimensions and the low specific absorption rate requirements, may encourage the use of the 3D-EPI sequence for fMRI in situations with higher SNR. Magn Reson Med, 2012. (C) 2011 Wiley Periodicals, Inc.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Wietske_TempSNR_2011.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

373.47 KB

Format

Adobe PDF

Checksum (MD5)

3c76f1e255f61a135f3ea1114001be9d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés