Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fast and Robust Distributed Learning in High Dimension
 
conference paper

Fast and Robust Distributed Learning in High Dimension

El-Mhamdi, El-Mahdi  
•
Guerraoui, Rachid  
•
Rouault, Sebastien  
September 21, 2020
2020 International Symposium on Reliable Distributed Systems (SRDS)
IEEE 39th International Symposium on Reliable Distributed Systems (SRDS 2020)

Could a gradient aggregation rule (GAR) for distributed machine learning be both robust and fast? This paper answers by the affirmative through Multi-Bulyan. Given n workers, f of which are arbitrary malicious (Byzantine) and m = n − f are not, we prove that Multi-Bulyan can ensure a strong form of Byzantine resilience, as well as an m / n slowdown, compared to averaging, the fastest (but non Byzantine resilient) rule for distributed machine learning. When m ≈ n (almost all workers are correct), Multi-Bulyan reaches the speed of averaging. We also prove that Multi-Bulyan's cost in local computation is O(d) (like averaging), an important feature for ML where d commonly reaches 10⁹, while robust alternatives have at least quadratic cost in d. Our theoretical findings are complemented with an experimental evaluation which, in addition to supporting the linear O(d) complexity argument, conveys the fact that Multi-Bulyan's parallelisability further adds to its efficiency.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

srds20-paper.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

n/a

Size

1.9 MB

Format

Adobe PDF

Checksum (MD5)

b29fb18534d8705a274fe77495121fd1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés