Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Seasonal variability of groundwater level effects on the growth of Carex cinerascens in lake wetlands
 
research article

Seasonal variability of groundwater level effects on the growth of Carex cinerascens in lake wetlands

Feng, Wenjuan  
•
Mariotte, Pierre  
•
Xu, Ligang
Show more
2020
Ecology And Evolution

Groundwater level is crucial for wetland plant growth and reproduction, but the extent of its effect on plant growth can vary along with changed precipitation and temperature at different seasons. In this context, we investigated the effect of two groundwater levels (10 cm vs. 20 cm depth) on growth and reproductive parameters of Carex cinerascens, a dominant plant species in the Poyang Lake wetland, during three seasons (spring, summer, and autumn) and during two consecutive years (2015 and 2016). Carex cinerascens showed low stem number, height, and individual and population biomass in summer compared to spring and autumn. 10 cm groundwater level was overall more suitable for plant growth resulting in higher stem height and biomass. However, the interactive effect between groundwater level and season clearly demonstrated that the effect of groundwater level on plant growth occurred mainly in autumn. After the withering of the plant population in summer, we observed that C. cinerascens growth recovered in autumn to similar values observed in spring only with 10 cm groundwater level. Consequently, we could deduce that lowering groundwater level in the studied Poyang Lake wetland will negatively impact C. cinerascens regeneration and growth particularly during the second growth cycle occurring in autumn. Additionally, our results showed that, independently of the season and groundwater level, population biomass of C. cinerascens was lower during drier year. Altogether, our findings suggest that water limitation due to both reduction in precipitation and decreased groundwater level during the year can strongly impact plant communities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ece3.5926.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

732.68 KB

Format

Adobe PDF

Checksum (MD5)

092c8d911e2abcd57cc9d4f8679ec789

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés