Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modulation of proton-induced current fluctuations in the human nicotinic acetylcholine receptor channel
 
research article

Modulation of proton-induced current fluctuations in the human nicotinic acetylcholine receptor channel

Danelon, C.  
•
Grandl, J.  
•
Hovius, R.  
Show more
2007
Biochimica et Biophysica Acta

The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that switches upon activation from a closed state to a full conducting state. We found that the mutation delta S268K, located at 12' position of the second transmembrane domain of the delta subunit of the human nAChR generates a long-lived intermediate conducting state, from which openings to a wild-type like conductance level occur on a submillisecond time scale. Aiming to understand the interplay between structural changes near the 12' position and channel gating, we investigated the influence of various parameters: different ligands (acetylcholine, choline and epibatidine), ligand concentrations, transmembrane voltages and both fetal and adult nAChRs. Since sojourns in the high conductance state are not fully resolved in time, spectral noise analysis was used as a complement to dwell time analysis to determine the gating rate constants. Open channel current fluctuations are described by a two-state Markov model. The characteristic time of the process is markedly influenced by the ligand and the receptor type, whereas the frequency of openings to the high conductance state increases with membrane hyperpolarization. Conductance changes are discussed with regard to reversible transfer reaction of single protons at the lysine 12' side chain.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FINAL.pdf

Access type

openaccess

Size

1.65 MB

Format

Adobe PDF

Checksum (MD5)

876c257e3a56212a23f7c5209e5d63c6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés