Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dipole-Fed Rectangular Dielectric Resonator Antennas for Magnetic Resonance Imaging at 7 T: The Impact of Quasi-Transverse Electric Modes on Transmit Field Distribution
 
research article

Dipole-Fed Rectangular Dielectric Resonator Antennas for Magnetic Resonance Imaging at 7 T: The Impact of Quasi-Transverse Electric Modes on Transmit Field Distribution

Wenz, Daniel
•
Gruetter, Rolf  
June 15, 2021
Frontiers in Physics

Shortened dipole antennas based on rectangular dielectric blocks play an important role in ultrahigh field magnetic resonance imaging (UHF-MRI) radio frequency (RF) coil design. However, the generally assumed direct contact with the subject is difficult to maintain in typical in vivo settings. We have previously observed that certain dielectrically shortened dipole antennas can produce a substantially altered transmit field distribution with a very low transmit efficiency when the block and the sample are physically separated. Therefore, the aim of this study was to determine a) why certain designs of dielectrically shortened dipole antennas can produce an inefficient transmit field when the block and the sample are physically separated and b) how this depends on key parameters such as rectangular block geometry, dielectric constant, loading geometry, and RF feeding. In this work, two main types of quasi-transverse dielectric modes were found in different rectangular block geometries and interpreted as TE11 delta z (MR efficient) and TE1 delta delta y (MR inefficient), and their impact on in vivo MRI experiments involving the human head, calf, and wrist was explored. This study shows, for the first time, why certain antennas preserve their transmit field efficiency despite physical separation from the sample. We conclude that the proposed approach has the potential to provide new insights into dipole antenna design for UHF-MRI.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

fphy.2021.675509.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.75 MB

Format

Adobe PDF

Checksum (MD5)

e6f8eea46501db41dc83e598cab908b8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés