Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor
The effects of high pulse intensity and chirp on two-dimensional electronic spectroscopy signals are experimentally investigated in the highly non-perturbative regime using atomic rubidium vapor as clean model system. Data analysis is performed based on higher-order Feynman diagrams and non-perturbative numerical simulations of the system response. It is shown that higher-order contributions may lead to a fundamental change of the static appearance and beating-maps of the 2D spectra and that chirped pulses enhance or suppress distinct higher-order pathways. We further give an estimate of the threshold intensity beyond which the high-intensity effects become visible for the system under consideration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
oe-28-18-25806.pdf
publisher
openaccess
copyright
5.25 MB
Adobe PDF
035becc11441afd5a3c53396a5853cf8