Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. LCAV-31: a dataset for light field object recognition
 
conference paper

LCAV-31: a dataset for light field object recognition

Ghasemi, Alireza  
•
Afonso, Nelly Julie  
•
Vetterli, Martin  
2014
Proceedings of the SPIE
IS&T/SPIE Electronic Imaging 2014

We present LCAV-31, a multi-view object recognition dataset designed specifically for benchmarking light field image analysis tasks. The principal distinctive factor of LCAV-31 compared to similar datasets is its design goals and availability of novel visual information for more accurate recognition (i.e. light field information). The dataset is composed of 31 object categories captured from ordinary household objects. We captured the color and light field images using the recently popularized Lytro consumer camera. Different views of each object have been provided as well as various poses and illumination conditions. We explain all the details of different capture parameters and acquisition procedure such that one can easily study the effect of different factors on the performance of algorithms executed on LCAV-31. We also apply a set of basic object recognition algorithms on LCAV-31. The results of these experiments can be used as a baseline for further development of novel algorithms.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

902014.pdf

Access type

openaccess

Size

1.82 MB

Format

Adobe PDF

Checksum (MD5)

6f9c4ff0ad95743f6e2e3c85ca05a1d2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés