Ultrathin metal-organic framework sandwiching strategy for dual-passivation in p-i-n perovskite solar cells
This study explores the effects of both the concentration and structural integration of ultrathin metal–organic framework (MOF) layers that sandwich the perovskite active layer in inverted (p–i–n) perovskite solar cells (PSCs), employing NiO as the hole transport layer (HTL). The introduction of dual MOF interlayers significantly enhances the crystallinity, grain size, and environmental stability of the perovskite film. Devices with the dual-MOF configuration (NiO/MOF/Perovskite/MOF/PCBM/Ag) demonstrated a notable increase in power conversion efficiency (PCE), from 12.06 % (reference: NiO/Perovskite/PCBM/Ag) to 16.11 %. This ∼34 % absolute enhancement is primarily attributed to improved short-circuit current density (Jsc), which increased from 20.06 to 22.44 mA/cm2, owing to optimized light harvesting and superior film morphology. Electrochemical impedance spectroscopy (EIS) verified the decrease in charge transfer resistance and improved carrier transport in the dual-MOF devices, with values of 368.33 Ω for the reference device and 206.84 Ω for the dual-MOF device. In addition, dual-MOF devices maintained over 96 % of their initial power conversion efficiency (PCE) after a 30-day period in ambient conditions (25 °C, 45 ± 5 % relative humidity), which is in stark contrast to the significant degradation that was seen in the reference devices. These findings underscore the potential of MOF–perovskite heterostructures for achieving stable, high-performance PSCs.
2-s2.0-105017649681
University of Tehran
University of Tehran
École Polytechnique Fédérale de Lausanne
University of Tehran
University of Tehran
2026-02-01
202
110106
REVIEWED
EPFL