Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Damage models for UHPFRC and R-UHPFRC tensile fatigue behaviour
 
research article

Damage models for UHPFRC and R-UHPFRC tensile fatigue behaviour

Makita, Tohru  
•
Bruehwiler, Eugen  
2015
Engineering Structures

Ultra-High Performance Fibre Reinforced Composites (UHPFRC) is a cementitious material showing relatively high tensile strength and significant tensile strain-hardening behaviour (given a certain volume of fibres). Adding a layer of UHPFRC or UHPFRC combined with steel rebars (R-UHPFRC) to structural members is an efficient method for strengthening of reinforced concrete structures. This paper presents empirical fatigue damage models for UHPFRC and R-UHPFRC. The tensile fatigue behaviour of UHPFRC is analysed based on elementary damage mechanics theory. Damage grows at a constant rate until fatigue fracture, which is considered to be due to the capacity of UHPFRC to redistribute local deformation increases. Difference in damage evolution between fatigue fracture tests and run-out fatigue tests is highlighted, and it is understood that when significant damage is caused in UHPFRC in the early stage of the fatigue life, UHPFRC fractures due to tensile fatigue. An average curve of damage evolution of fatigue fracture tests is proposed as a bi-linear damage evolution model of UHPFRC. The damage evolution model is used to determine the remaining fatigue life of UHPFRC by correlating the damage-fatigue strain relationship for UHPFRC. Considering that stress transfer from UHPFRC to steel rebars is characteristic of the R-UHPFRC tensile fatigue behaviour and is caused by fatigue damaging of the UHPFRC part, evolution of the modulus of deformation, i.e. the ratio of stress to strain of the UHPFRC part of the R-UHPFRC specimens is investigated. Among all the R-UHPFRC specimens similar behaviour is observed in the fatigue damaging curves of the deformation modulus of the UHPFRC part. An empirical relationship between the modulus of deformation of the UHPFRC part in the R-UHPFRC element and the number of fatigue cycles is proposed to characterise the R-UHPFRC tensile fatigue behaviour. (C) 2015 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.engstruct.2015.01.049
Web of Science ID

WOS:000352670100006

Author(s)
Makita, Tohru  
Bruehwiler, Eugen  
Date Issued

2015

Publisher

Elsevier Sci Ltd

Published in
Engineering Structures
Volume

90

Start page

61

End page

70

Subjects

UHPFRC

•

UHPFRC with steel rebars

•

Tensile fatigue

•

Damage mechanics

•

Damage evolution

•

Empirical relationship

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
MCS  
Available on Infoscience
May 29, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/114225
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés