Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
 
research article

Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption

Froelicher, David  
•
Troncoso-Pastoriza, Juan R.  
•
Raisaro, Jean Louis  
Show more
October 11, 2021
Nature Communications

Existing approaches to sharing of distributed medical data either provide only limited protection of patients' privacy or sacrifice the accuracy of results. Here, the authors propose a federated analytics system, based on multiparty homomorphic encryption (MHE), to overcome these issues.

Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-021-25972-y.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.37 MB

Format

Adobe PDF

Checksum (MD5)

d29bafbffadf3208821036760e866d7a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés