Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Sharing Data and Work Across Concurrent Analytical Queries
 
conference paper

Sharing Data and Work Across Concurrent Analytical Queries

Psaroudakis, Iraklis  
•
Athanassoulis, Manos  
•
Ailamaki, Anastasia  
2013
Proceedings of the 39th International Conference on Very Large Data Bases
39th International Conference on Very Large Data Bases

Today's data deluge enables organizations to collect massive data, and analyze it with an ever-increasing number of concurrent queries. Traditional data warehouses (DW) face a challenging problem in executing this task, due to their query-centric model: each query is optimized and executed independently. This model results in high contention for resources. Thus, modern DW depart from the query-centric model to execution models involving sharing of common data and work. Our goal is to show when and how a DW should employ sharing. We evaluate experimentally two sharing methodologies, based on their original prototype systems, that exploit work sharing opportunities among concurrent queries at run-time: Simultaneous Pipelining (SP), which shares intermediate results of common sub-plans, and Global Query Plans (GQP), which build and evaluate a single query plan with shared operators. First, after a short review of sharing methodologies, we show that SP and GQP are orthogonal techniques. SP can be applied to shared operators of a GQP, reducing response times by 20%-48% in workloads with numerous common sub-plans. Second, we corroborate previous results on the negative impact of SP on performance for cases of low concurrency. We attribute this behavior to a bottleneck caused by the push-based communication model of SP. We show that pull-based communication for SP eliminates the overhead of sharing altogether for low concurrency, and scales better on multi-core machines than push-based SP, further reducing response times by 82%-86% for high concurrency. Third, we perform an experimental analysis of SP, GQP and their combination, and show when each one is beneficial. We identify a trade-off between low and high concurrency. In the former case, traditional query-centric operators with SP perform better, while in the latter case, GQP with shared operators enhanced by SP give the best results.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

p519-psaroudakis.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

221.9 KB

Format

Adobe PDF

Checksum (MD5)

4e185061d790b6726ebb8561951468e1

Loading...
Thumbnail Image
Name

paper.pdf

Access type

openaccess

Size

3.97 MB

Format

Adobe PDF

Checksum (MD5)

03d30ffe8e1248bc943043131359a5ac

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés