Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Size dependent strengthening in particle reinforced aluminium
 
research article

Size dependent strengthening in particle reinforced aluminium

Kouzeli, M.  
•
Mortensen, A.  
2002
Acta Materialia

The tensile behaviour of composites produced by infiltrating ceramic particle beds with high purity (99.99%) At is studied as a function of reinforcement size and chemistry (Al2O3 and B4C). The yield stress is higher in composites containing B4C particles, increasing with decreasing interparticle distance in both composite systems. The flow stress of the composites, when corrected for damage, displays the same dependence on interparticle distance as the yield stress. The overall strain hardening exponent, however, is independent of the microstructural scale. These observations are rationalized based on the theory of geometrically necessary dislocations. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

KouzeliM-2002a.pdf

Access type

openaccess

Size

709.44 KB

Format

Adobe PDF

Checksum (MD5)

026b33b9cdcf2e1cd9bea2534b57d4f9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés