Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator
 
research article

Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator

Picasso, M.  
2003
Communications in Numerical Methods in Engineering

The framework of Formaggia and Perotto (Numerische Mathematik 2001; 89:641-667) is considered to derive a new anisotropic error indicator for a Laplace problem in the energy norm. The matrix containing the error gradient is approached using a Zienkiewicz-Zhu error estimator. A numerical study of the effectivity index is proposed for anisotropic unstructured meshes, showing that our indicator is sharp. An anisotropic adaptive algorithm is implemented, aiming at controlling the estimated relative error. Copyright (C) 2003 John Wiley Sons, Ltd.

  • Details
  • Metrics
Type
research article
DOI
10.1002/cnm.546
Web of Science ID

WOS:000180684500002

Author(s)
Picasso, M.  
Date Issued

2003

Published in
Communications in Numerical Methods in Engineering
Volume

19

Issue

1

Start page

13

End page

23

Subjects

a posteriori error estimates

•

adaptive finite elements

•

anisotropic

•

meshes

•

GRIDS

Note

Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland. Picasso, M, Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland.

ISI Document Delivery No.: 640JC

Cited Reference Count: 17

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ASN  
Available on Infoscience
August 24, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/233731
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés