Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Application aux équations aux dérivées partielles d'une méthode par point fixe et le problème des deux puits
 
doctoral thesis

Application aux équations aux dérivées partielles d'une méthode par point fixe et le problème des deux puits

Basterrechea, Sébastien  
2015

This thesis consists of two parts. The first part is about a variant of Banach's fixed point theorem and its applications to several partial differential equations (PDE's), abstractly of the form [ \mathcal Lu + \mathcal Q(u) = f.] The main result of this first part asserts that an equation having this form admits a solution if the datum $f$ satisfies a certain smallness assumption. This result (we call it \emph{the fixed point method}) is relatively simple to use and can be applied to a large variety of PDE's. The downside is that it guarantees the existence of solutions only for "small" data. The equations we deal with are Jacobian equations, non-linear elliptic PDE's, transport problems and the semi-linear wave equation. The second part of the thesis treats the $\emph{two well problem}$ in two dimensions [ \nabla u \in \mathbb{S}_A \cup \mathbb{S}_B\quad \text{almost everywhere in}\ \Omega, ] [ u = u_0\quad \text{on}\ \partial\Omega. ] For the non-degenerate case $\det(A),\det(B) \neq 0$, we show a non-existence result for piecewise regular solutions if $A$ and $B$ are non-orthogonal. For the degenerate and semi-degenerate cases, we give a characterisation for the rank-one convex hull of $\mathbb{S}_A \cup \mathbb{S}_B$ and several existence results for Lipschitz and piecewise affine solutions. Finally, for each case, we construct several explicit non-trivial solutions for well-chosen boundary conditions $u_0$.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH6693.pdf

Access type

openaccess

Size

1.09 MB

Format

Adobe PDF

Checksum (MD5)

ccff05f35ce51d2a8a392b1ed9dfcee5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés