Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans
 
research article

Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans

Evans, JE
•
Snow, JJ
•
Gunnarson, AL
Show more
February 21, 2006
Journal of Cell Biology (JCB)

The diversity of sensory cilia on Coenorhabditis elegans neurons allows the animal to detect a variety of sensory stimuli. Sensory cilia are assembled by intraflagellar transport (IFT) kinesins, which transport ciliary precursors, bound to IFT particles, along the ciliary axoneme for Incorporation into ciliary structures. Using fluorescence microscopy of living animals and serial section electron microscopy of high pressure-frozen, freeze-substituted IFT motor mutants, we found that two IFT kinesins, homodimeric OSM-3 kinesin and heterotrimeric kinesin II, function in a partially redundant manner to build full-length amphid channel cilia but are completely redundant for building full-length amphid wing (AWC) cilia. This difference reflects cilia-specific differences in OSM-3 activity, which serves to extend distal singlets in channel cilia but not in AWC cilia, which lack such singlets. Moreover, AWC-specific chemotaxis assays reveal novel sensory functions for kinesin 11 in these wing cilia. We propose that kinesin II is a "canonical" IFT motor, whereas OSM-3 is an "accessory" IFT motor, and that subtle changes In the deployment or actions of these IFT kinesins can contribute to differences in cilia morphology, cilia function, and sensory perception.

  • Details
  • Metrics
Type
research article
DOI
10.1083/jcb.200509115
Author(s)
Evans, JE
Snow, JJ
Gunnarson, AL
Ou, GS
Stahlberg, H  orcid-logo
McDonald, KL
Scholey, JM
Date Issued

2006-02-21

Publisher

Rockefeller University Press

Published in
Journal of Cell Biology (JCB)
Volume

172

Issue

5

Start page

663

End page

669

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LBEM  
Available on Infoscience
February 13, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/165451
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés