Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Constrained Binary Identification Problem
 
conference paper

Constrained Binary Identification Problem

Karbasi, Amin  
•
Zadimoghaddam, Morteza  
2013
Proceedings of the 30th Symposium on Theoretical Aspects of Computer Science
30th Symposium on Theoretical Aspects of Computer Science

We consider the problem of building a binary decision tree, to locate an object within a set by way of the least number of membership queries. This problem is equivalent to the “20 questions game” of information theory and is closely related to lossless source compression. If any query is admissible, Huffman coding is optimal with close to H[P] questions on average, the entropy of the prior distribution P over objects. However, in many realistic scenarios, there are constraints on which queries can be asked, and solving the problem optimally is NP-hard. We provide novel polynomial time approximation algorithms where constraints are defined in terms of “graph", general “cost", and “submodular" functions. In particular, we show that under graph constraints, there exists a constant approximation algorithm for locating the target in the set. We then extend our approach for scenarios where the constraints are defined in terms of general cost functions that depend only on the size of the query and provide an approxima- tion algorithm that can find the target within O(log(log n)) gap from the cost of the optimum algorithm. Submodular functions come as a natural generalization of cost functions with decreas- ing marginals. Under submodular set constraints, we devise an approximation algorithm that can find the target within O(log n) gap from the cost of the optimum algorithm. The proposed algorithms are greedy in a sense that at each step they select a query that most evenly splits the set without violating the underlying constraints. These results can be applied to network tomography, active learning and interactive content search.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

STACS2013_app.pdf

Access type

openaccess

Size

468.2 KB

Format

Adobe PDF

Checksum (MD5)

4c23b2b2327d533bdaef638272b1b58b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés