Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight
 
research article

Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight

Nieto, J. I.  
•
Pierzchala, K.
•
Sienkiewicz, A.
Show more
2010
Environmental Science & Technology

The inactivation of coliphage MS2 by iron- and copper-catalyzed Fenton systems was studied to assess the importance of this process for virus inactivation in natural systems and during water treatment by advanced oxidation processes. The influence of H2O2 (3−50 μM) and metal (1−10 μM) concentrations, HO• production, and sunlight on inactivation was investigated. Inactivation was first order with respect to H2O2, but the dependence on the metal concentration was more complex. In the Cu/H2O2 system, the inactivation rate constant kobs increased with added Cu up to 2.5 μM, and then leveled off. This was consistent with Cu saturation of the solution, indicating that only soluble Cu contributed to inactivation. In contrast, inactivation in the Fe/H2O2 system was governed by colloidal iron. Irradiation by sunlight only affected the Fe/H2O2 system, leading to a 5.5-fold increase in kobs (up to 3.1 min−1). HO• production, measured by electron spin resonance, could not account for the observed inactivation in the Fe/H2O2 system. Other oxidants, such as ferryl species, must therefore play a role. Experiments using bulk oxidant scavengers revealed that inactivation occurred by a caged mechanism involving oxidant production by metals located in close proximity to the virus. Overall, our results show that the Fenton/photo-Fenton process may serve as an efficient technology for virus disinfection.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

es903739f.pdf

Access type

restricted

Size

217.07 KB

Format

Adobe PDF

Checksum (MD5)

4a841f4fbbcfe1102fe2265528f43daa

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés